The generator matrix 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 X X X X X X 1 1 1 X X X X X X 1 X 1 1 1 1 1 2X+2 1 1 1 2X+2 0 0 2X 0 2X+2 2X+2 2X 2X 2X 0 2X+2 2X+2 X 2X+2 1 1 1 1 0 2 0 2X+2 0 0 2X+2 2 2X 2X 2 2X+2 2X 2X 2 2X+2 0 2X 2X+2 2 0 2X 2X+2 2 2X 0 2 2X+2 2X 2X 2X+2 2 0 2X+2 2X+2 0 2 2X+2 2 2 2X 0 2 2X+2 0 0 2X 2X+2 0 2X 2 2 2X+2 2X 2 2 0 2X 2X+2 2X+2 2X+2 2X+2 2X 0 2X+2 2X+2 0 2X 2X 2X 2X 2 2X+2 2 0 0 2 2X+2 2X 2X+2 2 2X 2X 2X+2 2 2X 0 2 2X+2 0 0 2X+2 2X+2 0 2X 2 2 2X 2X 2 2 2X 0 2X+2 2X+2 0 2 2X 2 2X+2 2X+2 0 2 2X+2 2 2X+2 2X 0 0 2X 2X 2X+2 2X 2X+2 2X+2 2X 2 0 2 0 2X+2 2X+2 2X+2 2 2X 0 2X+2 2X+2 2 2X+2 2X 2X 2X 0 2 0 0 0 generates a code of length 74 over Z4[X]/(X^2+2X+2) who´s minimum homogenous weight is 73. Homogenous weight enumerator: w(x)=1x^0+80x^73+141x^74+8x^75+10x^76+4x^77+2x^78+5x^80+4x^89+1x^90 The gray image is a code over GF(2) with n=592, k=8 and d=292. This code was found by Heurico 1.16 in 9.39 seconds.